On Two Fifth Order Mock Theta Functions

نویسنده

  • SANDER ZWEGERS
چکیده

We consider the fifth order mock theta functions χ0 and χ1, defined by Ramanujan, and find identities for these functions, which relate them to indefinite theta functions. Similar identities have been found by Andrews for the other fifth order mock theta functions and the seventh order functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bailey Pairs With Free Parameters, Mock Theta Functions and Tubular Partitions

This study began in an effort to find a simpler derivation of the Bailey pairs associated with the seventh order mock theta functions. It is shown that the introduction of a new parameter independent of both a and q leads to a much simpler treatment. It is noted that a previous treatment of the central fifth order mock theta function inadvertently uses this approach. The paper concludes by appl...

متن کامل

On the Irrationality of Ramanujan’s Mock Theta Functions and Other Q-series at an Infinite Number of Points

We show that all of Ramanujan’s mock theta functions of order 3, Watson’s three additional mock theta functions of order 3, the RogersRamanujan q-series, and 6 mock theta functions of order 5 take on irrational values at the points q = ±1/2,±1/3,±1/4, . . . .

متن کامل

On Recursions for Coefficients of Mock Theta Functions

We use a generalized Lambert series identity due to the first author to present qseries proofs of recent results of Imamoğlu, Raum and Richter concerning recursive formulas for the coefficients of two 3rd order mock theta functions. Additionally, we discuss an application of this identity to other mock theta functions.

متن کامل

Split $(n+t)$-Color Partitions and Gordon-McIntosh Eight Order Mock Theta Functions

In 2004, the first author gave the combinatorial interpretations of four mock theta functions of Srinivasa Ramanujan using n-color partitions which were introduced by himself and G.E. Andrews in 1987. In this paper we introduce a new class of partitions and call them “split (n+t)-color partitions”. These new partitions generalize Agarwal–Andrews (n + t)-color partitions. We use these new combin...

متن کامل

On combinatorial extensions of some mock theta functions using signed partitions

Recently Agarwal and Sood, in their paper entitled “Split (n+ t)−color partitions and Gordon-McIntosh eight order mock theta functions, The Electronic Journal of Combinatorics 21(2), (2014), #P2.46”, have defined and used the ‘split (n+t)−color partitions’ to obtain the combinatorial interpretations of two mock theta functions. The purpose of this paper is to extend their results using ‘signed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008